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Elastic behavior of sheet molding compound (SMC) composites with a given orientational distribution of
fibers under cyclic loading is investigated herein. Fatigue tests were carried out over various strain ranges.
During each test, evolution of Young’s modulus was measured and the composite was analyzed using
scanning electron microscopy. Observations revealed the principal form of degradation to be matrix fiber
debonding. A constitutive model that takes into account the reduction of overall elastic properties, i.e.,
Young’s modulus, was developed. This model uses a Mori-Tanaka mean field approach coupled with a
micromechanical damage law. The energetic failure criterion and the failure probability are functions of
local shear and normal stresses calculated at each point of the interface of each fiber family. A procedure
for identifying the most appropriate material parameters is described in detail. The proposed model agrees
well with the experimental results.
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1. Introduction

In recent years, composite materials have become highly
attractive for structural applications, due both to their technical
merit and their economic potential. One example is the sheet
molding compound (SMC), which, due to its esthetic, electrical
and mechanical properties, finds use in a wide range of appli-
cations. Short glass fibers (20-30 mm in length) are randomly
distributed in a polyester resin. This process introduces a scat-
ter of micromechanical parameters of the fibers, and the be-
havior of the composite is very sensitive to the volume fraction
of fibers, the distribution of their orientations, and the aspect
ratio of the reinforcement. It is important to be able to predict
the mechanical behavior and damage behavior of the SMC in
relation to the properties of the microstructure. Mechanical
behavior of SMC has been also investigated (Ref 1-3). In pre-
vious works (Ref 4, 5), debonding was observed to influence
the macroscopic properties of composite materials. Analytical
and experimental models of cumulative damage were devel-
oped to predict the lifespan of the structures in the composites
(Ref 6-13).

The effect of matrix degradation and interfacial debonding
on stiffness reduction in a random discontinuous fiber compos-

ite was studied by Meraghni et al. (Ref 14). To identify damage
mechanisms, they carried out both microscopic observations
and acoustic emission analysis.

Lee et al. (Ref 15) developed and analyzed a micromechani-
cal model for predicting bridging laws of short fiber compos-
ites with deterministic length. Similar models were proposed
by Maalej (Ref 16), who took into account the variability of
fiber strength.

The works of Guo et al. (Ref 17-21) then proposed a con-
stitutive model for micromechanical damage of SMC compos-
ite under monotone loading. Le Pen et al. (Ref 22) developed a
Mori-Tanaka model that included a law for fiber-breaking
damage in fatigue of Al-Al2O3 composites.

The model proposed in this paper draws its inspiration from
this class of models and, in addition, takes into account the
cyclic damage of the SMC composite. The elementary physical
mechanisms of damage must be well identified, and we de-
scribe them by local criteria on the microscopic level (i.e., on
the scale of the fiber). In the present work, an energetic failure
criterion is introduced into the micromechanical model. Macro-
experimental fatigue tests were carried out to determine this
criterion.

The aim of this work is to describe the reduction in stiff-
ness of the composite as a function of the number of cycles.
The full optimization procedure requires the analysis of thou-
sands of cycles and thus rapidly becomes prohibitive. To avoid
this, the so-called “cycle jump technique” developed by Lesne
(Ref 23) was used. In Section 2, the material characteristics
and experimental procedure are presented. Section 3 is devoted
to the model used. The main constitutive equations of the
model are described, and then the algorithm and numerical
implementation are shown. The experimental results related to
the damage mechanism are discussed in Section 4, where the
identification of the material parameters and a comparison be-
tween experimental results and numerical simulation are also
presented.
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2. Materials and Methods

The material investigated herein is an SMC composite. The
microstructural nature of this material is as follows. The matrix
consists of a mixture of polyester resin and a mineral charge of
CaCo3 particles, between 2 and 30 �m in size. Reinforcement,
introduced as bundles with a nominal mass fraction of 42%, are
randomly oriented, short fiber-glass fibers, 25 mm in length.
The SMC composite used is Inoplast (supplied by Marwe
Composites, France) in the form of a thin sheet, 2.6 mm thick.
To analyze the microstructure of the fiber bundles, some speci-
mens were sectioned along three perpendicular directions. In a
given plane, the orientation distribution was obtained by scan-
ning electron microscopy (SEM) coupled with image analysis.
A low orientation of fibers in the matrix is noted. As a result of
these experimental investigations, the fiber orientation � is ob-
tained with:

� = arc sin�a�b� (Eq 1)

The orientation distribution of fibers in the SMC matrix was
obtained by Keyvani (Ref 24). The volume fraction of fibers
with the same orientation is �i, and consequently the orientation
distribution is given by:

fi

f
=

1

nf
�1 + � cos�2�i − ��� (Eq 2)

where fi is the volume fraction of fibers directed according to
the angle �i, f is the total volume fraction of fibers, nf is the
total number of fiber families, and � is the percentage of dis-
oriented fibers (� � 14%).

The main mechanical characteristics of the SMC composite
are shown in Table 1.

A typical tensile test of the SMC composite is shown in
Fig. 1. Pure elastic behavior is observed up to a stress level
of 20 MPa, above which elastic behavior with damage is
seen.

To identify the damage mechanisms of the SMC composite
under cyclic loading, fatigue tests combined with microstruc-
tural SEM analysis were carried out. Four cyclic tension-
compression tests under strain-controlled loads were performed
on an MTS (Material Tests Systems, Eden Prairie, MN) fatigue
machine. The adopted ratio between the maximum and mini-
mum strain levels was R� � 0.1, and the test frequency was 5
Hz. Various levels of loading, quantified in amplitude of de-
formation, were imposed: ��1 � 0.60%, ��2 � 0.72%, ��3

� 0.80%, ��4 � 0.87%. Four specimens were tested for each
condition. During each test, evolution of the Young’s modulus
with the number of cycles was measured, and SEM observa-
tions were made of specimens from interrupted tests

The fatigue tests were carried out to study the reduction in
stiffness for the various imposed amplitudes of deformation.
Figure 2 shows evolution of the ratio E/E0 with N for each level
of loading, where E0 is the initial Young’s modulus and E is the
Young’s modulus at cycle N. A similar tendency was observed
over each of the four ranges of strain. A very slow linear
decrease of the Young’s modulus was observed over the first
90% of the life of the SMC. This was followed by a rapid
decrease in the modulus during the last 3 to 5% of the life
before fracture.

The reduction in stiffness appears to be more marked when
the amplitude of deformation increases. This phenomenon can
be explained at the microstructural level by the mechanism of
degradation. SEM observations of specimens prepared from
interrupted fatigue tests showed that the degradation occurs in
two stages. First, microscopic fissure start to appear on the
level of the interface fiber matrix. The initiation of these in-
terfacial microscopic fissures is independent of the fiber ori-
entation in the matrix and involves a reduced number of fibers.
Second, the microscopic fissures propagate and coalesce so
that gradually the fibers become locked to one another. The
fissures crossing the matrix and separating the locks of fibers
circumvent the chalk particles and remain overall perpendicu-
lar to the direction of loading (Fig. 3).

3. Numerical Modeling

3.1 Constitutive Equations

Basic equations used the micromechanical model to deter-
mine composite stiffness, and equations for the local stresses

Table 1 Mechanical properties of materials studied

E, GPa � �u, MPa

Polyester matrix 3.5 0.35 50
Glass fibers 72–74 0.28 1500
SMC 42 Composite 15–16 … 128

Fig. 1 Typical tensile curve of SMC composite

Fig. 2 Evolution of stiffness reduction with number of cycles
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on the fiber-matrix interface are also based on the approach of
Mori and Tanaka (Ref 25). The mathematical treatment of such
composite is obtained by considering the stiffness of either the
matrix or the fiber to be isotropic.

Overall stress is respectively explained in relation to the
matrix strain and the overall strain. With the help of Eshelby’s
theory (Ref 26, 27) for an ellipsoidal inclusion defined by an
aspect ratio (length/diameter), the composite stiffness tensor

L̃̃comp is given by:

L̃̃comp = L̃̃m:�Ĩ̃ + Q̃̃:�Ĩ̃ + H̃̃�−1�−1 (Eq 3)

in which Ĩ̃ represents the fourth-rank identity tensor. H̃̃ and Q̃̃
are deduced from stiffness tensor of the matrix and from the
stiffness tensor of any fiber i:

H̃̃ = �
i

fi

f
�S̃̃ i − Ĩ̃�:Q̃̃ i (Eq 4)

Q̃̃ = �
i

fi

f
Q̃̃ i (Eq 5)

Q̃̃ i = �L̃̃m + �L̃̃i − L̃̃m�:S̃̃ i�−1:�L̃̃m − L̃̃i� (Eq 6)

where S̃̃i is the Eshelby tensor of the ith fiber family, which
depends on the matrix mechanical characteristics. L̃̃m and L̃̃i are
the stiffness tensor for the matrix and the fiber, respectively.
The above theory leads to the expression of local stress tensor
�̃ i in the inclusion:

�̃i = L̃̃m:�Ĩ̃ + H̃̃i�:�Ĩ̃ + H̃̃i�−1:Ẽ0 (Eq 7)

where Ẽ̃0 denotes the uniform macrostrain tensor. These ten-
sors are all expressed in the macroscopic principal axes of the
composite plate.

The interfacial failure criterion is generally expressed as a
function of both normal stress � and shear stress � at the in-
terface. These local stresses are obtained by projection of the
local stress tensor �̃ i in the local basis of the fiber (Fig. 4).

A number of studies used the Coulomb criterion, in which
a friction coefficient at the fiber/matrix interface is introduced.
In this study, the adopted criterion takes into account of both
interfacial stress state and the number of loading cycles N.
Hence an energetic criterion is written in a statistical form:

� �

A��B + N��2

+ � �

C��D + N��2

= 1 (Eq 8)

In this last expression, the ratios A/B and C/D represent the
normal and shear stresses, respectively, for which the criterion
is satisfied during the first cycle. This criterion is chosen to
describe decrease of the interfacial strength with the number of

Fig. 3 Damage evolution for fiber family perpendicular to the load
(� � 90°)

Fig. 4 Local and composite basis
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cycles. Using this criterion, the interfacial failure probability
for each fiber orientation family �i is given by:

Pr��i� = 1 − exp�−�� �

A��B + N��2

+ � �

C��D + N��2�m�
(Eq 9)

where m is a material parameter related to the scatter of mi-
crostructure. Normal stress � and shear stress � depend on the
macroscopic stress and fiber orientation, volume fraction, as-
pect ratio of the fiber, elastic properties of the matrix, and the
fiber.

In these conditions, the orientation distribution of fibers
varies with the number of cycles. After the interfacial debond-
ing between fibers and the matrix, the damaged fibers are sub-
stituted by the matrix (Ref 17). The expression of localization
tensors given in Eq 4 and 5 becomes:

H̃̃ = �
i

fi

f
�1 − Pr��i���S̃̃ i − Ĩ̃�:Q̃̃ i (Eq 10)

Q̃̃ = �
i

fi

f
�1 − Pr��i��:Q̃̃ i (Eq 11)

The stiffness tensor of SMC can finally be computed for each
cycle. This allows the evolution of the reduction in Young’s
modulus to be obtained as a function of the number of cycles.

3.2 Implementation of the Method

The equations described in the last section will either be
used in simulation analysis or integrated into an optimization
code. Figure 5 shows the algorithm of this method. The matrix
and fiber characteristics are used to calculate tensors H̃̃i and Q̃̃i

for each family of fiber in the case of safe material (without any
damage). At the same time, the orientation distribution is ini-
tialized.

For the first cycle, H̃̃ and Q̃̃ are calculated with an interfacial
failure probability equal to zero for all fibers. Furthermore,
interfacial failure probability founded at cycle N will be intro-
duced in Eq 10 and 11 to compute tensors H̃̃ and Q̃̃ at cycle
N + 1.

Normal and shear stresses are obtained at the interfacial
fiber matrix. For a given orientation, the considered interfacial
failure criterion is the maximum one all around the fiber.

A method referred to as the “cycle jump technique” (Ref 23)
is used to accelerate calculation. The key of this method, ini-
tially developed for viscoplastic structure calculations involv-
ing large number of cycles, is the use of an automatic step
control. Accordingly, when possible, a certain number of
cycles are jumped.

3.3 Parameter Identification

To identify the material parameters, the optimization code
SIDOLO developed by Pilvin (Ref 28) is used. The basic opera-
tion of the optimization process is minimizing of the functional
built from both experimental results and numerical simulation
and characterizing the difference between them. This func-
tional £ depends on the vector of the parameters C and can be

expressed as the sum of elementary functional £k, defined for
each test (k) in experimental base:

£�C� = �
k

£k�C � (Eq 12)

£k�C� =
1

Nk
�
j=1

Nk

�Z j
k* − Z j

k��D��Z j
k* − Z j

k� (Eq 13)

A “test” is either a true measurement or a set of required
values, to be reached by the design (e.g., a prescribed stress
level at given points). The expression of £k is given in the space
of “observable” variables, which are “measured” during the
test (k), at Nk sampling points: Zj

k is the vector of the experi-

Fig. 5 General scheme for proposed methodology
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mental values, obtained as a response to the applied solicitation
at the measurement location (and/or time) j: Zj

k* denotes the
simulated response, depending on C, at some points. The ma-
trix [D] is diagonal and allows a balance between the points,
for instance, to increase the weight of the most precise mea-
surements. As classically known, functionals are often badly
conditioned (minima in narrow and elongated zones, existence
of local minima, etc.), so that the simultaneous contribution of
several minimization algorithms is needed. In the present case,
the minimization technique used for the solution of the non-
linear optimization problem associates a gradient method and
modified Newton-Raphson method for accelerating the conver-
gence rate in the final phase of the identification. Evaluation of
the gradient is made numerically by perturbation: the fact that
no analytical evaluation is needed makes its use simple for any
type of model.

Two principal methods can be used in an optimization pro-
cedure:

• The first one is based on the sensitivity analysis in which
the partial derivative of the physical variables in relation to
the optimizing parameters is used. These values can be
numerically or analytically evaluated and implemented in
the simulation code.

• The second approach, used by Pilvin et al. (Ref 29, 30)
and adopted in the present work, is based on the evalua-
tion of the derivative form by perturbation using two
different processes: the SIDOLO code is the “master,” and
the damage code is the “slave.” The function of the slave
code is to predict the evolution of Young’s modulus with
the number of cycles. The modular aspect of this method
offers to the user the opportunity of modifying the calcu-
lation of the cost function so that the type of optimizat-
ion described above can be achieved using a similar
scheme.

In our present optimization, the components of vector C are
the material parameters used in the interfacial failure criterion:

C = �m, A, B, C, D� (14)

Compared with Eq 12 and 13, four tests are considered. For
each one, the elementary functional is given by:

£k�C� = �
j=1

N

�E*� j� − E� j��2 (15)

where E*( j) and E( j) are respectively the values of the simu-
lated and experimental values of Young’s modulus after j
cycles.

Figure 6(a)-(d), respectively, show a comparison between
simulated stiffness reduction and experimental stiffness reduc-
tion for the four imposed strain levels (��1 � 0.60%, ��2 �
0.72%, ��3 � 0.80%, ��4 � 0.87%). The predicted Young’s
modulus reduction agrees well with experimental observations.
An optimal parameter set is given in Table 2.

For monotone loading (N � 0), the ratios A/B (for normal
stress) and C/D (for shear stress) are equal to 17 and 9 MPa,
respectively. These values correspond, respectively, to the in-
terface strength in the normal and tangential directions.

Table 2 Optimal parameter values

Parameter A B C D m

Optimal value 2.4 × 105 0.143 × 105 21 × 105 2.21 × 105 0.21

Fig. 6 Evolution of stiffness reduction with number of cycles:
(a) � � 0.60%, (b) � � 0.72%, (c) � � 0.80%, (d) � � 0.87%
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4. Conclusions

In the SMC material studied herein, the dominant damage
mechanism is interfacial decohesion, which leads to degrada-
tion of the mechanical properties, i.e., reduction in stiffness. A
formulation of a micromechanical damage constitutive model
is presented to predict stiffness reduction as a function of the
number of fatigue cycles. This model is based on a quadratic
interfacial criterion expressed in terms of normal and shear
local stresses at the fiber-matrix interface.

To assess the model ability, four tests are considered in the
experimental data set. It was shown to be possible to obtain a
good correlation with a set of results including various strain
ranges.

The complete parameter set in the model can be easily de-
termined, thanks to the modular form of SIDOLO. An acceler-
ated procedure is also used to avoid cycle-per-cycle computa-
tions.

This micromechanical model allows prediction of the com-
plete damage elastic behavior law of an SMC composite as a
function of the microstructure parameters. The local interface
damage law introduced in the Mori-Tanaka model leads to the
prediction of the hysteresis stress strain loop in fatigue. It can
be used for a three-dimensional applied stress or strain tensor.
It predicts the evolution of the mechanical properties with the
number of cycles due to damage.
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